Standardizing Security: The case of
threshold cryptography

Ran Canetti

Boston University

(Goals tor standardization

* Creating agreement on an object: Making the world more efficient
e Common language

* (Quarter Pounder vs. Royale with Cheese)
* Interoperability

* Electric plugs
* |ETF

* Modular design
* ProgramAPIs

* Benchmarking: setting common levels of quality and operation

* Getting people from different backgrounds to brainstorm and agree on what works

Standardizing cryptographic protocols

Complex object:
 Several parties, different concerns = security harder to capture

* Depends on other mechanisms:
* Networking stack
e Actual network properties
* Execution environment

Where to draw the line?

Standardize Threshold Cryptography?

e Seriously? Let’s crawl before we run marathons...

Standardize Threshold Cryptography?

e Seriously? Let’s crawl before we run marathons...

But people are using it in practice, and we’ll have to live with whatever
they come up with...

Standardize Threshold Cryptography?

e Seriously? Let’s crawl before we run marathons...

But people are using it in practice, and we’ll have to live with whatever
they come up with...

=» Let’s do it right !

Standardizing Threshold Cryptography:
Suggested guidelines

e Concentrate on a small set of primitives (eg. threshold signatures)
Do we want to concentrate on specific verification algorithms for interoperability?
If so then which ones? (ECDSA? Schorr? BLS? EDDSA?) or leave it open?

* Agree on clear APIs for the primitive:
* With the calling program (the “user”
* When should a signhature be generated?

e With OS utilities and service programs
 Memory, cache
 Network (channel assumptions?)

* Agree on a set of security properties
* Unforgeability (for signatures) Sem. Security (for enc)?

e Under what attacks? (Chosen messae/ciphertext? delay? MiM? Adaptive?
Mobile/proactive?)

e Distributional equality with some standardized spec? (and why?)
e Composability/ Modularity?

Standardizing Threshold Cryptography:
Suggested guidelines

* Once we agree on these, can have a competition for
* Algorithms

* Implementations

* Proofs of cryptographic security
e Security analysis of implementation

T
5

ne UC approach:

necification via an ldeal-Service, with composition

[Universally composable security, C20]

|dea:

 Security of a system is reflected only in its effects on the rest of the external
environment.

* Therefore to capture the desired security of system P:

* Write an “ideal system” F that captures the desired effects: Functionality and security

* The proof of security will assert that P can be made to “looks the same” as F to an
external environment.

Note: F need not be realistically implemented. All we care about is its responses to the
environment.

The ideal threshold signature functionality

[Given: Identities S = S, ...S,, of signatories, access structure A:{0,1}"* — {0,1}]

Keygen: When receiving input “KeyGen” from a subseta € Ss.t. A(a) = 1:
obtain from Adv a verification key VK and output VK to all.
Sign: When receiving input “Sigh m” from* a subseta € Ss.t. A(a) = 1:
hand m to Ady, obtain a signature string g, add (m, g, 1) to local database DB and output o to all.
Verify: When receiving input “Verify (VK,m,0)” from some party V:
If (m,o0,b) € DB thenreturn b toV
Elseif (m,0',1) & DB for any ¢’ then return 0 to V & unforgeability
Else hand (m, o) to Adv, obtain b € {0,1}, add (m,o,b) to DB ,and return b toV.

Corrupt: When Adv asks to corrupt / uncorrupt S;, mark S; as corrupted/uncorrupted.
While S; is corrupted, Adv is allowed to approve signing/keygen instead of S; .
When asked by S; if corrupted, answer truthfully.

The ideal threshold signature functionality

Provides:
* Clear APl with user protocol

* Clear functionality

* Clear security properties
e Composability. Modularity

Does not provide:
* APIs with OS, network services. (Can be added...)

Can do the same for threshold decryption...

s N

~ apparently they don't call it a quarter
pounder with cheese they get the metric

